
iOS SDK Setup and Test App Instructions - Version 1.0

1. Create a new XCode Application

2. Select the project file:

a.

3. File >> Add Packages OR select the plus button in the “Packages” window

a.

4. Select the “Add Local” button and add the SDK folder that you were given.

a.

5. Once the package is added, click the project header (the “app” symbol) in the file

tree in XCode and select your app under “Targets”. In the Frameworks section,

you may now add the SDK as a library.

6. You may now try to use “import iOSMobilePrintEngine” in a swift file to see if you

can access the library. If you get build errors from other package dependencies

you may follow this.

Adding Bluetooth Permissions

● In order to use the Bluetooth libraries within the SDK, you must let the

user allow these permissions.

● Click the project header in the file tree in XCode and select your app

under “Targets”. Navigate to the “Info” tab and add them underneath

“Custom iOS Target Properties”.

● The first time you install your app and use Bluetooth you will now receive

this pop up asking for confirmation.

Implementation Tutorial

1. Create a new project and select “App” template to create it

2. We will only touch 2 files in this tutorial:

a. ContentView - (anything related to a view on the screen)

b. Model - (all the function calls we make to the SDK directly)

3. We must initialize our Model in the first line of our ContentView as such:

a. @ObservedObject var model = Model()

4. Model will inherit the PrinterUpdateListener and PrinterDiscoveryListener

interfaces and ObservableObject.

a. public class Model: PrinterUpdateListener,

PrinterDiscoveryListener, ObservableObject {

b. WARNING: Add “import iOSMobilePrintEngine” to the top of this file

if they are not showing up.

5. If you try to build, you should get a warning that allows you to include

these interfaces methods. Add these.

6. We will initialize 2 crucial variables in Model.swift

a. private var printerDiscovery: PrinterDiscovery =

PrinterDiscoveryFactory.getPrinterDiscovery(listeners:

[PrinterDiscoveryListeners](self))

i. We will use this to discover and connect to a printer

b. @Published private var foundPrinters =

[DiscoveredPrinterInformation]()

i. This will be a list of printers that were found nearby. Since

this is a “Published” variable, as soon as its contents are

changed, it automatically notifies our UI because of the

Model’s @ObservableObject tag

7. Discovering Printers:

a. Make a function called getFoundPrinterNames() in Model.swift

b. From ContentView.swift you will call:

yourList=model.getFoundPrinterNames() to return a list of just the

printer names that you can populate any sort of view with.

c. When a printer is discovered, it will trigger the printerDiscovered()

method in Model where you can filter out printers like:

8. Connecting to Printers:

a. Now that you are displaying the discovered printers to the user, you

can allow them to select one to connect to it. Make a function that

takes the selected printer name and find its corresponding

DiscoveredPrinterInformation.

b. Then, we can use the printerDiscovery’s

connectToDiscoveredPrinter function to connect.

c. This will return the printer’s details if it is connected successfully.

This allows you to see the printer’s battery life, supply information,

and connection status, amongst other useful information.

9. Printing:

a. You need two objects that you will pass into the .print() function.

i. The template object (look at step 10)

ii. The specified PrintingOptions you will create such as:

iii. Pass in true to “dontPrintTrailerFlag” for now

iv. You may want to add a spinning wheel or progress bar since

the .print() is an await method and it takes time to print.

b. DISCLAIMER: Only shapes and text print properly in this version.

10. Previewing A Label:

a. You must have a local directory that your app can “point to” which

holds a collection of .BWT files.

b. Choose a way to grab the file names and display a list of clickable

strings to the user such as a Picker object within a Menu.

c. When the user clicks a template to preview from this list, create a

function in Model.swift that takes that String:

d. This function will grab the file matching the String, will convert it to

an InputStream, and will pass this into

TemplateFactory.getTemplate(template: iStream)

e. Finally, from ContentView.swift, you can call this function and use

the returned template to get a rendered image from the SDK.

i. let template: Template? =

model.getSelectedTemplate(context: AppContext(),

selection: selection)

ii. let bitmap: CGImage? = try

template?.getPreview(labelNumber: 1, dpi: 96,

maxPixelWidthAndHeight: 288)

11. Apply Data to Template Objects:

a. With the selected template object from the previous step, you can

call template.getTemplateData() to get a list of the objects in the

template.

b. You can then call each object’s respective methods to make

changes such as “setName” or “setValue”. More is coming soon!

Software Requirements

● Currently works on iOS 15 and up

● Xcode version 14.1

● Swift 5

