iOS SDK Setup and Test App Instructions - Version 1.0

1. Create a new XCode Application

2. Select the project file:

[am]

v

a.

0 a A

Test

>

Test

Test) B, iPod touch (7th generation)

Info Build Settings | Package Dependencies

3 TestApp

3l ContentView

Assets

PROJECT Vv Packages (0 items)

Test Name Version Rules Location

Preview Content

TARGETS

B Test

Add Package Dependency

3. File >> Add Packages OR select the plus button in the “Packages” window

L New >

File Edit View Find Navigate Editor Product Debug Source Control Window Help
B Test) I iPod touch (7th generation)

Add Files to “Test"...

Add Packages...
Info Build Settings | Package Dependencies

Open...
Open Recent ~ Packages (0 items)
G Name Version Rules (e Tk

Close Tab

Close “Test.xcodeproj”
Close Editor

Close Window

Close Project

4. Select the “Add Local” button and add the SDK folder that you were given.

Add a Package Collection...
No Package Sources

Add Local...

5. Once the package is added, click the project header (the “app” symbol) in the file
tree in XCode and select your app under “Targets”. In the Frameworks section,

you may now add the SDK as a library.

~ Frameworks, Libraries, and Embedded Content

Name

1 i0SMobilePrintEngine

6. You may now try to use “import iOSMobilePrintEngine” in a swift file to see if you
can access the library. If you get build errors from other package dependencies

you may follow this.

4 Answers Sorted by: Highest score (default)

L3

1. Quit Xcode
2. Open Terminal

35

3. Navigate to the directory where your .xcodeproj is via Terminal (cd
path/to/your/apps/folder)

4, Run xcodebuild -resolvePackageDependencies

5. After the packages finish resolving, open Xcode and try building again.

Adding Bluetooth Permissions

In order to use the Bluetooth libraries within the SDK, you must let the
user allow these permissions.

Click the project header in the file tree in XCode and select your app
under “Targets”. Navigate to the “Info” tab and add them underneath

“Custom iOS Target Properties”.

PermissionTesting a P ing) [l PLY DEV iPhone 7 i g on PLY DEV iPhone 7
BR 3 ContentView PermissionTesting
PermissionTesting
(n] General Signing & Capabilities Resource Tags | Info Build Settings Build Phases Build Rules
BROJECT ~ Custom iOS Target Properties

PermissionTesting Value

$(PRODUCT_NAME)
$(PRODUCT_BUNDLE_IDENTIFIER)
6.0

3it

TARGETS e
nary version

PermissionTesting > interface orientations (iPhone)

3 items|
$(CURRENT_PROJECT_VERSION)

CUTABLE_NAME)
$(PRODUCT_BUNDLE_PACKAGE_TYPE)

PMENT_LANGUAGE)
$(MARKETING_VERSION)

Description Allow this application to use Bluatooth?
Privacy - Blustooth Peript 1ge Dascription s Allow this application to find nearby Devices?

BOOOOOGOOO OO0

The first time you install your app and use Bluetooth you will now receive

this pop up asking for confirmation.

No SIM & 11:37 AM @ @)

Discovered Printers:

“SDKTestApp" Would
Like to Use Bluetooth
Can this app use Bluetooth?

Don't Allow OK

Implementation Tutorial

1. Create a new project and select “App” template to create it
2. We will only touch 2 files in this tutorial:
a. ContentView - (anything related to a view on the screen)
b. Model - (all the function calls we make to the SDK directly)
3. We must initialize our Model in the first line of our ContentView as such:
a. @ObservedObject var model = Model()
4. Model will inherit the PrinterUpdateListener and PrinterDiscoveryListener
interfaces and ObservableObject.
a. public class Model: PrinterUpdatelListener,
PrinterDiscoveryListener, ObservableObject {
b. WARNING: Add “import iOSMobilePrintEngine” to the top of this file
if they are not showing up.
5. If you try to build, you should get a warning that allows you to include
these interfaces methods. Add these.
6. We will initialize 2 crucial variables in Model.swift
a. private var printerDiscovery: PrinterDiscovery =
PrinterDiscoveryFactory.getPrinterDiscovery(listeners:
[PrinterDiscoveryListeners](self))
i. We will use this to discover and connect to a printer
b. @Published private var foundPrinters =

[DiscoveredPrinterinformation]()

i. This will be a list of printers that were found nearby. Since
this is a “Published” variable, as soon as its contents are
changed, it automatically notifies our Ul because of the

Model’'s @ObservableObiject tag

7. Discovering Printers:

a. Make a function called getFoundPrinterNames() in Model.swift

public func () =» [String] {
printerDiscoveryStarted
var printerMames
for printer in foundP1 {
printerNames.append({printer.getiName())

}

return printerNames

}

public func
printerDiscovery.startBlePrinterDi

}

b. From ContentView.swift you will call:
yourList=model.getFoundPrinterNames() to return a list of just the
printer names that you can populate any sort of view with.

c. When a printer is discovered, it will trigger the printerDiscovered()

method in Model where you can filter out printers like:

public fun : DiscoveredPrinterInformation) {
if(in i jere: {discoveredPrinterInformation.getName() == $8.getName()})) {
fi d(discoveredPrinterInformation)

}
}

8. Connecting to Printers:

a. Now that you are displaying the discovered printers to the user, you
can allow them to select one to connect to it. Make a function that
takes the selected printer name and find its corresponding
DiscoveredPrinterinformation.

b. Then, we can use the printerDiscovery’s

connectToDiscoveredPrinter function to connect.

public fune (: String) asyne {
var listeners: Array<PrinterUpdatelistener> = []
listeners.ap elf)
var printerToCol coveredPrinterInformation? = nil
for printer i s {
if printer rinterSelected {
printerToConnectTo = printer
print 0

1s = await printerD dPrinter(printe ted: printerToConnectTo!, 1i -s: listeners)

c. This will return the printer’s details if it is connected successfully.
This allows you to see the printer’s battery life, supply information,
and connection status, amongst other useful information.
9. Printing:
a. You need two objects that you will pass into the .print() function.
i. The template object (look at step 10)

i. The specified PrintingOptions you will create such as:

public func : Template?) async {
let printingOpt ntingOptions
printingOptions n = Option
printingOptions =1

let printingStatus: PrintingStatus = await (printerDetails?.print(template: template!, printingOptions: printingOptions, dontPrintTrailerFlag: true))} ?? PrintingStatus.PrintingFailed

iii. Pass in true to “dontPrintTrailerFlag” for now
iv. You may want to add a spinning wheel or progress bar since
the .print() is an await method and it takes time to print.

b. DISCLAIMER: Only shapes and text print properly in this version.

10. Previewing A Label:

a.

You must have a local directory that your app can “point to” which
holds a collection of .BWT files.

Choose a way to grab the file names and display a list of clickable
strings to the user such as a Picker object within a Menu.

When the user clicks a template to preview from this list, create a

function in Model.swift that takes that String:

public func (: AppContext, i String) -> Template? {
doq{

let filePath = URL(fileReferencelLiter :sourceName: selection)
let templateData: Data = try Datalcon filePath)

let iStream: InputStream InputStream(c templateData)
return TemplateFactory.getTemplate(te e: iStream)

¥

catch let e
print(error

}

return nil

}

This function will grab the file matching the String, will convert it to
an InputStream, and will pass this into
TemplateFactory.getTemplate(template: iStream)

Finally, from ContentView.swift, you can call this function and use
the returned template to get a rendered image from the SDK.

i. lettemplate: Template? =
model.getSelectedTemplate(context: AppContext(),
selection: selection)

ii. letbitmap: CGlmage? = try
template?.getPreview(labelNumber: 1, dpi: 96,

maxPixelWidthAndHeight: 288)

11. Apply Data to Template Objects:

a. With the selected template object from the previous step, you can
call template.getTemplateData() to get a list of the objects in the
template.

b. You can then call each object’s respective methods to make

changes such as “setName” or “setValue”. More is coming soon!

Software Requirements

e Currently works on iOS 15 and up
e Xcode version 14.1

e Swift5

